Using MS Access for your research

12 steps (give or take a few) to giving up the excel habit

Steven Citron-Pousty
Steven.Citron-Pousty@yale.edu
Excel

- Good for calculations
- You are very familiar with it
- SOMETHING ELSE

But just because you know how to use a hammer the whole world is NOT a nail
Examples of problems

- Select all the people with brown hair, high blood pressure, and younger than 37
- Match all survey information with voting history for 400,000 people
- Show all the purchases on a given day and add on personal information for any people where we have the information
- More than 1 person needs to enter data at the same time
- You need to give certain people access to one view of the data and other people to a different view
Solution to these Problems

• The basic solution is to use an RDBMS (Relational Database Management System)
• Many examples – Oracle, DB2, PostgreSQL, MySQL, FileMaker, and MS Access
• We are going to cover using Access today
Why use Access

• Easy to install and run
• All over campus and the world
• Lots-o-reading with my favorite being the bible

• Good for people just getting started with DBs
• I am familiar with it
Example for today

- Invasive Species Database
- Person went around to different Herbariums (plant museums) and collected information on specimens from invasive species
- Analogous to collecting survey data on people in different schools OR patients at different clinical centers
- There is a data problem in one of the tables but otherwise there is a lot of relational structure
- It's in the c:\temp directory and called Example.mdb
Goals for today

• Teach you some DB terms and ideas
• Play with the existing DB for a bit
• Show you how to start creating your own DB
• Sum up

Golden rule: You must ask me questions!!
Table

- Table – Like a spreadsheet yet not really a spreadsheet.
 - The data should be as atomic as possible/repeating fields – example Student/teacher
 - Each table can also be thought of as a person, place, or thing
 - Observation - same as row in a spreadsheet
 - No way to do calculations in a spreadsheet fashion, i.e. =a1+b1
What does it look like in Access

<table>
<thead>
<tr>
<th>species_id</th>
<th>genus</th>
<th>species</th>
<th>authority</th>
<th>common_name</th>
<th>plant</th>
<th>date_entered</th>
<th>genus_speci</th>
<th>subspecies</th>
<th>plantsCode</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Cabomba</td>
<td>caroliniana</td>
<td>A. Grey</td>
<td>Fanwort</td>
<td>☑</td>
<td></td>
<td>Cabomcar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Allanthus</td>
<td>altissima</td>
<td>(Mill) Swingl</td>
<td>Tree-of-heaven</td>
<td>☑</td>
<td></td>
<td>Allanalis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Najae</td>
<td>minor</td>
<td>Allioni</td>
<td>Eutrophic Wto</td>
<td>☑</td>
<td></td>
<td>Najaminor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Aegoposium</td>
<td>podagrania</td>
<td>L.</td>
<td>Goutweed</td>
<td>☑</td>
<td></td>
<td>Aegopodag</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Egeria</td>
<td>densa</td>
<td>Planchon</td>
<td>Brazilian water</td>
<td>☑</td>
<td></td>
<td>Egerdensa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Hydrilla</td>
<td>verticillata</td>
<td>(L. f.) Royle</td>
<td>Hydriilla</td>
<td>☑</td>
<td></td>
<td>Hydrilverti</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Myriophyllum</td>
<td>heterophyllum</td>
<td>Michx.</td>
<td>Variable water</td>
<td>☑</td>
<td></td>
<td>Myroheter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Myriophyllum</td>
<td>spicatum</td>
<td>L.</td>
<td>Eurasian wto</td>
<td>☑</td>
<td></td>
<td>Myropicia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Potamogeton</td>
<td>crispus</td>
<td>L.</td>
<td>Crispy-leaved P</td>
<td>☑</td>
<td></td>
<td>Potamcrisp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Ronpo</td>
<td>nymphaea-aq</td>
<td>(L.) Hayek</td>
<td>Watercress</td>
<td>☑</td>
<td></td>
<td>Ronpacthu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Trapa</td>
<td>natans</td>
<td>L.</td>
<td>Waterchestnut</td>
<td>☑</td>
<td></td>
<td>Trapanalan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Nymphoides</td>
<td>polata</td>
<td>(Gmel.) Kunt</td>
<td>Yellow Floating</td>
<td>☑</td>
<td></td>
<td>Nymphpolita</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Butomus</td>
<td>umbellatus</td>
<td>L.</td>
<td>Flowering Rush</td>
<td>☑</td>
<td></td>
<td>Butomumbel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Phragmites</td>
<td>australis</td>
<td>(Cav.) Trim.</td>
<td>Common Read</td>
<td>☑</td>
<td></td>
<td>Phragestr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Iris</td>
<td>pseudacorus</td>
<td>L.</td>
<td>Yellow iris</td>
<td>☑</td>
<td></td>
<td>Irispseud</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Fallopia</td>
<td>japonica</td>
<td>(Hartt) Denr</td>
<td>Japanese knot</td>
<td>☑</td>
<td></td>
<td>Fallopjon</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Big Difference – Columns

• Access calls the columns fields we might call them variables
• They have unique names
• They have to be defined as a type (boolean, floating point, string…)
• You have to say if you are going to allow blanks
Let's start Access and take a look around

• Go to C:\temp
• Double click on example.mdb and you should see this:
Areas in a DB view

- Tables
- Queries
- Forms
- Wizards at the top of each area to help you with common tasks
Let's open the species table
Primary Keys

• Primary Key is a variable/attribute that uniquely identifies each row
• Can also be a combination of columns
• You may be tempted to use things like last name+first name – DON’T
• Autoincrements are a good idea
Foreign Key

- When two tables are related you need a way to show that they are related
- Foreign key is a primary key from another table in your table.
- It shows that the two tables are related and how one row in one table related to another table
- Look at specimen table
Make our own table

- Lets make a table for people that view a specimen
- Columns
 - Id column
 - Foreign key from Specimen
 - First name
 - Last name
 - Age
 - Weight
 - Date of birth
 - Novella
 - Female
Relationships between tables

- One to one – one row in one table goes to only one row in another table
- One to Many – one row in one table (parent) goes to multiple rows in another table (child)
 - Parent primary key is a foreign key in the child table
- Many to Many – not allowed in relational databases.
 - Solve by putting an intermediate table which has foreign keys from both the tables you are linking
 - Look at Collectors and specimens
Access Relationship view

- You must manually add in the PK and FK relationships
- Open relationships view
- Then you drag from parent and drop in child fields
- In our case we need to add the new field and then make the relationship
- Usually you do this after making all your tables and they all appear
Queries

• Now we have all this nice data how do we get out what we want
• You create a subset of the data set based upon criteria you specify
• You can do calculation in your queries
• Access makes this easy – cheesy
• You can save the queries and use them as tables
 – Add to a query
 – Edit data directly in the query
 – Update all values in a column according to criteria
Using Design View

• Click on Create query in design view
• Add the tables that have the information you want
• Drag columns to the data area
• * is code for all columns
• Let just add the specimen table and see what happens
 – And vs Or
 – Sorting
 – = vs Like and Wildcards
SQL

• This is the actual language used to query database tables
• I am not going to go into it today.
• Access lets you see and tweak the SQL if you want to.
• Let's peek at the SQL behind the query
Indices

• Helps your queries go faster
• Makes inserts and updates go slower
• If you know you are going to query on a column consistently (last name, SS#) then you might make an index
• Primary key fields are almost always indexed
• Set in your table view
• Add index to species in the species table
Joins

- Need matching columns
- Usually your primary key/foreign key relationship
- You can create joins in the query area
- You can also change the properties on the join
Lets try out a join

- We are going to use the table specimen and species in a new query
- I will show you some of the tweaks we can do on a join
- What happens if you remove the join?
 - Cartesian product
Calculations in queries

• You can change the names of columns
• You can have a column be a formula
• Example: gen spp: [genus]+' '+[species]
Crosstab query

- Lets you do a crosstab within the DB
- Count of the # of specimens per species by state
- New Query in design and add the tables
- Change the query type
Importing Data

• You can create a new table by importing
• You can cut and paste data
 – Works pretty well from excel
 – Queries can help make the data look “similar”
• You can also link to a table
 – Data isn’t in the DB, its in the other file
 – Good allows other people to work on that data without needing access to your db
 – Bad need to have that file around when you use those tables
• You can import excel, dbase, lotus, and text files
Export

- Usually you will want to export from a query
- You can actually export the table
- You can also cut and paste
- Export to a lot of different formats
 - All the import formats
 - HTML
 - RTF
Not touched on

- Forms
- Reports
- Multi-user access
- Some useful wizards
Advanced Features

• Programming in Visual Basic
• Password protected databases
• ODBC connections to large databases or other files
• Replication
Resources

• Go this web page
Conclusion

• Access is good for
 – Beginners
 – Small to medium size DBs < 200mbs
 – 1 to 2 concurrent users
 – Windows only teams (for the most part)
 – Front ends to more complicated DBs